Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.

Identifieur interne : 000585 ( Main/Exploration ); précédent : 000584; suivant : 000586

Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.

Auteurs : Carsten Berndt [Allemagne] ; Gereon Poschmann [Allemagne] ; Kai Stühler [Allemagne] ; Arne Holmgren [Suède] ; Lars Br Utigam [Suède]

Source :

RBID : pubmed:24944912

Descripteurs français

English descriptors

Abstract

Glutaredoxin 2 is a vertebrate specific oxidoreductase of the thioredoxin family of proteins modulating the intracellular thiol pool. Thereby, glutaredoxin 2 is important for specific redox signaling and regulates embryonic development of brain and vasculature via reversible oxidative posttranslational thiol modifications. Here, we describe that glutaredoxin 2 is also required for successful heart formation. Knock-down of glutaredoxin 2 in zebrafish embryos inhibits the invasion of cardiac neural crest cells into the primary heart field. This leads to impaired heart looping and subsequent obstructed blood flow. Glutaredoxin 2 specificity of the observed phenotype was confirmed by rescue experiments. Active site variants of glutaredoxin 2 revealed that the (de)-glutathionylation activity is required for proper heart formation. Our data suggest that actin might be one target during glutaredoxin 2 regulated cardiac neural crest cell migration and embryonic heart development. In summary, this work represents further evidence for the general importance of redox signaling in embryonic development and highlights additionally the importance of glutaredoxin 2 during embryogenesis.

DOI: 10.1016/j.redox.2014.04.012
PubMed: 24944912
PubMed Central: PMC4060141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.</title>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24944912</idno>
<idno type="pmid">24944912</idno>
<idno type="doi">10.1016/j.redox.2014.04.012</idno>
<idno type="pmc">PMC4060141</idno>
<idno type="wicri:Area/Main/Corpus">000618</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000618</idno>
<idno type="wicri:Area/Main/Curation">000618</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000618</idno>
<idno type="wicri:Area/Main/Exploration">000618</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.</title>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="ISSN">2213-2317</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (MeSH)</term>
<term>Cell Movement (MeSH)</term>
<term>Embryo, Nonmammalian (metabolism)</term>
<term>Embryonic Development (MeSH)</term>
<term>Glutaredoxins (antagonists & inhibitors)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Heart (growth & development)</term>
<term>Myocardium (metabolism)</term>
<term>Neural Crest (cytology)</term>
<term>Neural Crest (metabolism)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Zebrafish (growth & development)</term>
<term>Zebrafish Proteins (antagonists & inhibitors)</term>
<term>Zebrafish Proteins (genetics)</term>
<term>Zebrafish Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Apoptose (MeSH)</term>
<term>Coeur (croissance et développement)</term>
<term>Crête neurale (cytologie)</term>
<term>Crête neurale (métabolisme)</term>
<term>Danio zébré (croissance et développement)</term>
<term>Développement embryonnaire (MeSH)</term>
<term>Embryon non mammalien (métabolisme)</term>
<term>Glutarédoxines (antagonistes et inhibiteurs)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Mouvement cellulaire (MeSH)</term>
<term>Myocarde (métabolisme)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Protéines de poisson-zèbre (antagonistes et inhibiteurs)</term>
<term>Protéines de poisson-zèbre (génétique)</term>
<term>Protéines de poisson-zèbre (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutaredoxins</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de poisson-zèbre</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Coeur</term>
<term>Danio zébré</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Crête neurale</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Neural Crest</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Heart</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de poisson-zèbre</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryo, Nonmammalian</term>
<term>Glutaredoxins</term>
<term>Myocardium</term>
<term>Neural Crest</term>
<term>RNA, Small Interfering</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Crête neurale</term>
<term>Embryon non mammalien</term>
<term>Glutarédoxines</term>
<term>Myocarde</term>
<term>Petit ARN interférent</term>
<term>Protéines de poisson-zèbre</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Cell Movement</term>
<term>Embryonic Development</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose</term>
<term>Développement embryonnaire</term>
<term>Interférence par ARN</term>
<term>Mouvement cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin 2 is a vertebrate specific oxidoreductase of the thioredoxin family of proteins modulating the intracellular thiol pool. Thereby, glutaredoxin 2 is important for specific redox signaling and regulates embryonic development of brain and vasculature via reversible oxidative posttranslational thiol modifications. Here, we describe that glutaredoxin 2 is also required for successful heart formation. Knock-down of glutaredoxin 2 in zebrafish embryos inhibits the invasion of cardiac neural crest cells into the primary heart field. This leads to impaired heart looping and subsequent obstructed blood flow. Glutaredoxin 2 specificity of the observed phenotype was confirmed by rescue experiments. Active site variants of glutaredoxin 2 revealed that the (de)-glutathionylation activity is required for proper heart formation. Our data suggest that actin might be one target during glutaredoxin 2 regulated cardiac neural crest cell migration and embryonic heart development. In summary, this work represents further evidence for the general importance of redox signaling in embryonic development and highlights additionally the importance of glutaredoxin 2 during embryogenesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24944912</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2213-2317</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.</ArticleTitle>
<Pagination>
<MedlinePgn>673-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2014.04.012</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin 2 is a vertebrate specific oxidoreductase of the thioredoxin family of proteins modulating the intracellular thiol pool. Thereby, glutaredoxin 2 is important for specific redox signaling and regulates embryonic development of brain and vasculature via reversible oxidative posttranslational thiol modifications. Here, we describe that glutaredoxin 2 is also required for successful heart formation. Knock-down of glutaredoxin 2 in zebrafish embryos inhibits the invasion of cardiac neural crest cells into the primary heart field. This leads to impaired heart looping and subsequent obstructed blood flow. Glutaredoxin 2 specificity of the observed phenotype was confirmed by rescue experiments. Active site variants of glutaredoxin 2 revealed that the (de)-glutathionylation activity is required for proper heart formation. Our data suggest that actin might be one target during glutaredoxin 2 regulated cardiac neural crest cell migration and embryonic heart development. In summary, this work represents further evidence for the general importance of redox signaling in embryonic development and highlights additionally the importance of glutaredoxin 2 during embryogenesis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poschmann</LastName>
<ForeName>Gereon</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stühler</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bräutigam</LastName>
<ForeName>Lars</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029961">Zebrafish Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047108" MajorTopicYN="N">Embryonic Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006321" MajorTopicYN="N">Heart</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009206" MajorTopicYN="N">Myocardium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009432" MajorTopicYN="N">Neural Crest</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029961" MajorTopicYN="N">Zebrafish Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">A, atrium</Keyword>
<Keyword MajorTopicYN="N">CCV, common cardinal vein</Keyword>
<Keyword MajorTopicYN="N">CNC, cardiac neural crest</Keyword>
<Keyword MajorTopicYN="N">Cardiac development</Keyword>
<Keyword MajorTopicYN="N">GSH, glutathione</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Grx, glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Migration</Keyword>
<Keyword MajorTopicYN="N">NC, neural crest</Keyword>
<Keyword MajorTopicYN="N">S-glutathionylation</Keyword>
<Keyword MajorTopicYN="N">V, ventricle</Keyword>
<Keyword MajorTopicYN="N">Zebrafish</Keyword>
<Keyword MajorTopicYN="N">zf, zebrafish</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>04</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24944912</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2014.04.012</ArticleId>
<ArticleId IdType="pii">S2213-2317(14)00065-2</ArticleId>
<ArticleId IdType="pmc">PMC4060141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 May 2;13(5):2339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2007;7:1090-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17619792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 May;4(5):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2008 May;18(4):150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Sep 1;45(5):549-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 15;13(6):833-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev Syst Biol Med. 2009 Sep-Oct;1(2):220-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20490374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2001 Feb;220(2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2001 Dec;222(4):552-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11748825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2002 Jul 23;106(4):504-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 21;112(4):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2003 Mar;226(3):540-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12619138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2003 May 1;257(1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12710962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 6;314(2):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Apr;131(7):1463-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 May 21;260(5111):1086-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8493552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 1995 Jul;203(3):253-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1998;60:267-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9558464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1999 Oct 1;214(1):23-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec A Discov Mol Cell Evol Biol. 2005 Feb;282(2):130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15627983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2005 May 1;281(1):66-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr Patterns. 2006 Jan;6(2):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Apr 1;292(1):174-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16499899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Sep;133(18):3629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Oct 1;298(1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16860789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Oct 15;15(8):2335-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21194351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Sep;22(18):3355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2012;46:397-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22974299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Dec 14;37(6):1037-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23159440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2013 Feb;25(1):30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23195437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2013 Jul 1;379(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23603493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1830(11):4999-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2007;600:109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17607950</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Suède</li>
</country>
<region>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
<li>Svealand</li>
</region>
<settlement>
<li>Düsseldorf</li>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</region>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
</country>
<country name="Suède">
<region name="Svealand">
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</region>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000585 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000585 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24944912
   |texte=   Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24944912" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020